
How SecurITree Deals with Random Events

SecurITree is primarily an attack tree analysis tool. However, it has significant fault tree
functionality as well. Even more notable is its ability to analyze situations that arise partly due to
adversarial actions and partly due to random factors. Let's see if I can explain this.

Consider first the capabilistic situation. In most cases we do not know the probability of an
attack. Seldom do we have statistics to guide us. Fundamentally, even if statistics exist they may
not apply to our situation. The likelihood of a given adversary performing a specific attack
depends on three factors:

1. The capabilities of the adversary (money, technical ability, time, opportunity,
tolerance for discovery, etc.)

2. The goals of the adversary (i.e., will the attack provide them the benefit they
seek)

3. The exploit requirements of the attack

These factors determine how likely (probable) it is that a given encounter (opportunity) between
the adversary and the target will result in the attack being realized. If we are looking to
understand the frequency of the attack, we also need to know the number of attackers in the
threat agent pool, the number of targets competing for their attention, and some additional
information about the type of attack. I won't go into that now, but SecurITree supports all of this.

SecurITree supports two levels of capabilities-based analysis - basic and advanced. Basic is very
simple and binary. You create a tree and define certain capability indicators (such as financial
cost, technical difficulty). You populate the leaf node exploits with values representing the
amount of each resource that needs to be expended to perform the exploit. Using aggregation
formulas defined for each indicator SecurITree computes the resource costs of each scenario in
the tree. Next, you create a profile of your threat agent. This profile defines the capabilities of
the adversary. It is applied to the tree and nodes (and paths) pruned away if they are beyond the
adversary's capabilities. A bit rudimentary but sufficient for quick and dirty analysis.

Advanced analysis is more sophisticated. It provides a more accurate depiction of the adversary.
It recognizes that the adversary's willingness to expend resources is not binary. Rather it varies
on a continuum. The adversary will be very willing to spend small amounts of a resource
(compared to what the adversary possesses). They will be less willing to spend large amounts of
the resource but may do so if the reward is sufficient. This requires the model to describe the
benefits that an attack may accrue. In SecurITree , this is done by defining impact indicators
reflecting attack benefits (money, confidential information, causing an outage). Both the
willingness to expend each resource and the value the attacker puts on each benefit (there may be
multiple) are described using utility curves. All of this is used to derive the probability of an
attack scenario being realized in an encounter between the target and the adversary.

To understand risk requires an additional component to be introduced. Risk (to the defender) is
the combination of the probability of the attack and the impact on the victim. Additional impact
indicators can be defined reflecting the type of damage attacks will cause to the defender. A
profile of the defender can be defined showing how they perceive given amounts of each type of

damage. Again, utility curves are defined for the defender translating raw amounts of damage
into perceived impacts. Combined with the previous probability calculation it is now possible to
assess the risk of an encounter between the adversary and target. If the additional information I
mentioned earlier is also available, then (using frequency) it is possible to compute the
cumulative risk - risk over a time period.

Now, what about fault tree analysis. SecurITree also supports fault trees. Note that in a fault tree
there is only a single indicator function determining the likelihood of a series of events. This
indicator is probability of occurrence. Why only one indicator? Because probability (whether
defined from basic principles (like tossing a dice) or from statistics) includes all of the factors
that influence the event. An example I frequently use involves the total failure of the braking
system on an automobile.

You may well be puzzled by the way SecurITree requires you to enter probability data at the leaf
nodes.

Oddly, it seems concerned not just
about how often the event occurs,
but rather how long it lasts. It turns
out that this is required to analyze a
very interesting situation.

First, let me mention that fault
trees differ from attack trees in
some very fundamental ways. In a
fault tree, the leaf level events are
assumed to be statistically
independent. In the model above,
the likelihood of a brake cable
breaking is completely unrelated to
whether or not a hydraulic leak
occurs in the master cylinder. The

likelihood of both happening at the same time is the product of their individual probabilities.

This has several interesting consequences. It means that, in addition to the leaf level
probabilities, it is also possible to directly calculate the probability of every scenario (called a cut
set in fault tree parlance). In the attack tree, we had to infer the likelihood based on capability
and desirability of the scenario. It is also possible to calculate the probability of intermediate
nodes being reached in the fault tree and the overall probability of the root node being attained.
To do this in an attack tree is much more involved and requires some other processes I haven't
discussed.

It should be noted that, in an attack tree, the leaf level events are not independent. In fact, they
are highly interdependent. Whether or not a particular leaf node occurs may well depend on
whether some other leaf node has been previously performed. Interestingly, a single leaf node
may have several probabilities depending on the attack scenario that is being considered! This is
very different from a fault tree.

So, back to the question of why SecurITree wants a duration value for probabilistic events.

In some cases attack scenarios may result from a combination of random events and attacker
actions. Let me give a simple example involving physical security.

There is a factory located on the American Gulf coast that produces some type of widget. These
widgets are stored in an outdoor yard that is protected by a chain link fence equipped with
motion sensor detectors. Guards regularly patrol the perimeter. So, to get into the yard, an
attacker must perform several tasks.

Some of these activities (taking out the guards and dogs, and suppressing the alarms) might be
complicated, prone to detection and require significant resources. These steps are shown below.

However, it turns out that, on average, for about three days per year, the New Orleans area is in
the midst of a hurricane. During this type the guards huddle in their shacks, the dogs are cower
in their kennels and the motion sensors are useless (triggering constantly). In this case, a brave
(foolish ?) attacker might only need to cut the fence and extract the goods.

So, there are two cases (and probabilities). One for good weather. Another for hurricane
weather. How do we analyze this for the hurricane situation?

Let's pretend that New
Orleans is always in a
hurricane state. In that case,
simple capabilities-based
analysis will tell us what the
likelihood would be for the
attacker cutting the fence
and extracting the goods
(both simple, low resource
activities). However, since
we know that New Orleans
is only in a hurricane
situation for 3 days of the
year (about 1% of the time),
the overall average will be
1% of whatever the
probability is if the hurricane
were perpetual. Interestingly, it isn't the number of hurricanes that influences this but rather the
fraction of time spent in the hurricane state that matters!

The whole situation can be depicted as

But, there are two more ways in which SecurITree deals with probability. The first builds on the
probability work above. In some cases, a control or countermeasure can be thought of as a
machine. Machines often fail due to random factors. Many years ago I worked with a first
generation Intrusion Detection System (IDS). It was horrible. It ran on Windows NT. It often
couldn't keep up with network traffic and missed packets. Worse, it tried to update its signatures
a couple times a day. Occasionally the update would fail. You might think it would keep using
the previous signatures - but oh, no - instead it just continued on with no signatures!

SecurITree allows the analyst to define a control that fails due to random factors. This really
builds on the probability work shown earlier and requires that a probability indicator be defined
and the top node of the control subtree has subtype = Countermeasure. Here is what that might
look like.

Note the o on the top of the countermeasure tree. It conveys the idea that, when the IDS is
working perfectly (100% uptime), it is impossible to get past the control. However, when it fails
it can be bypassed.

And there is one more way in which probability can be defined in SecurITree. Sandia National
Laboratory introduced the idea of attacker effectiveness. The idea is that, even when an attacker
performs a step (leaf node or intermediate node) perfectly, sometimes it just doesn't work. For
instance, buffer overflows often depend on a code entry point being at a certain location in
memory. However, random factors may cause it to be somewhere else in a given case.
SecurITree allows you to capture this.

